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Abstract

Let B be a real or complex complete normed quadratic algebra. All homo-
morphisms from arbitrary (possibly non associative) complete normed algebras
into B are continuous if and only if B has no non-zero element with zero square.

1.- Introduction

A classical topic in the theory of automatic continuity is that of determining
those normed algebras B which satisfy Property ACHR which follows.

ACHR (Automatic Continuity of Homomorphisms into the Right side of
the arrow).- For every complete normed algebra A, each homomorphism ϕ :
A→ B is continuous.

Usually, Property ACHR is considered in an associative context, so that the
normed algebraB is assumed to be associative, and Property ACHR forB means
that, for every associative complete normed algebra A each homomorphism
ϕ : A→ B is continuous. For an approach to results in this direction, the reader
is referred to the survey paper of H. G. Dales [4]. In this paper we are interested
in the natural non-associative meaning of Property ACHR. Then the normed
algebra B can be or not associative, and, even if B is associative, Property
ACHR for B has the stronger sense that, for every possibly non associative
complete normed algebra A, each homomorphism ϕ : A→ B is continuous. In
this new setting, we know that real or complex absolute-valued algebras, as well
as complete normed complex algebras with no non-zero one-sided topological
divisors of zero, have property ACHR (see [9] and [11], respectively).

As main result, we show that real or complex complete normed quadratic
algebras have property ACHR if and only if they have no non-zero element
with zero square (Theorem 1). We note that quadratic algebras are important
not only from an algebraic point of view [12], but also in connection with the
analysis. For instance, the structure theory of JB-algebras [5] would not be
understood without the consideration of the so-called spin JBW -factors, which
are relevant examples of quadratic algebras. We note also that smooth normed
non-associative algebras and normed non-commutative Jordan division algebras
are quadratic algebras (see [2] and [7], and [6], respectively). By the way, we re-
mark that, as a consequence of our results, spin JBW -factors, as well as smooth
normed algebras and complete normed non-commutative Jordan division alge-
bras, are ACHR-algebras.
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2.- The results

Algebras arising throughout this paper are not assumed to be associative.
Let B be an algebra. A (two-sided) ideal M of B is said to be modular if there
exists some element e in B such that y− ye ∈M and y− ey ∈M for every y in
B. The strong radical of B is defined as the intersection of all modular maximal
ideals of B. We say that B is strongly semisimple whenever the strong radical
of B is equal to zero. For y in B, we define the sequence {yn}n≥1, of left powers
of y, by y1 = y and yn+1 = yyn. By F we mean the field of real or complex
numbers. Our argument begins with the following variant of [1; Proposition
25.10].

LEMMA 1.- Let A be a complete normed algebra over F, B a strongly
semisimple algebra over F, and ϕ : A → B a surjective homomorphism. Then
Ker(ϕ) is closed in A.

Proof.- Take a modular maximal ideal M of B, and denote by π the quotient
mapping B → B/M . Since B/M is a simple algebra with a unit (say 1), and
the homomorphism π ◦ ϕ : A → B/M is surjective, (π ◦ ϕ)(Ker(ϕ)) must
be equal to either B/M or zero. Assume that the first possibility happens.
Then we have 1 = (π ◦ ϕ)(x) for some x in Ker(ϕ). Taking y in Ker(ϕ)
with ‖ x − y ‖< 1, putting z := x − y, and considering the element t of A
given by t :=

∑∞
n=1 z

n , we obtain 1 = (π ◦ ϕ)(z) and zt = t − z, leading the
contradiction (π ◦ ϕ)(t) = (π ◦ ϕ)(t) − 1. It follows (π ◦ ϕ)(Ker(ϕ)) = 0, or
equivalently ϕ(Ker(ϕ)) ⊆ M . Since M is an arbitrary modular maximal ideal
of B, and B is strongly semisimple, we finally deduce ϕ(Ker(ϕ)) = 0. �

The above proof actually shows that, if A is a complete normed algebra over
F, if B is any algebra over F, and if ϕ : A → B is a surjective homomorphism,
then ϕ(Ker(ϕ)) is contained in the strong radical of B.

Let B be an algebra over F. We say that B is algebraic (respectively, power-
associative) if every one-generated subalgebra of B is finite-dimensional (re-
spectively, associative). Assume that B is associative, and let y be an element
of B. We say that y is quasi-invertible in B if there exists z in B satisfying
yz = zy = y + z. It is easy to see that y is quasi-invertible in B if an only if
1 − y is invertible in the formal unital hull of B. For F equal to C and R, we
define the spectrum sp(B, y) of y relative to B by the equalities

sp(B, y) := {0} ∪ {λ ∈ C\{0} : λ−1y is not quasi-invertible in B}

and

sp(B, y) := sp(BC, y) (where BC stands for the complexification of B),

respectively.
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Now let B be an algebraic power-associative algebra over F, and y an el-
ement of B. An elemental spectral calculus shows that, for every associative
subalgebra C of B containing y, sp(C, y) does not depend on C. This allows
us to define the spectrum of y relative to B, sp(B, y), by means of the equality
sp(B, y) := sp(C, y) for some C as above. Actually sp(B, y) is nothing but
the set of (possibly complex) roots of a one-indeterminate polynomial p over F
without constant term and which has minimum degree among those satisfying
p(y) = 0. We define the algebraic spectral radius r(B, y) of y relative to B by
the equality r(B, y) := max{| λ | : λ ∈ sp(B, y)}.

LEMMA 2.- Let A be a complete normed algebra over F, B a strongly
semisimple algebraic power-associative algebra over F, and ϕ : A→ B a surjec-
tive homomorphism. Then, for every x in A, the inequality r(B,ϕ(x)) ≤‖ x ‖
holds.

Proof.- By Lemma 1, Ker(ϕ) is a closed ideal of A, and therefore A/Ker(ϕ)
is a complete normed algebra over F in a natural way. Let φ : A/Ker(ϕ) → B be
the unique surjective isomorphism such that φ◦π = ϕ (where π : A→ A/Ker(ϕ)
denotes quotient mapping). Then the function y →| y |:=‖ φ−1(y) ‖ from B
to R is an algebra norm on B. Since B is algebraic, such a norm is complete
on each one-generated subalgebra of B, and therefore, by power-associativity
and standard Banach algebra theory, we have r(B, y) ≤| y | for every y in B.
Finally, for x in A we obtain

r(B,ϕ(x)) ≤| ϕ(x) |=‖ φ−1(ϕ(x)) ‖=‖ π(x) ‖≤‖ x ‖ . �

An element y of an algebra is said to be isotropic if y 6= 0 = y2. As we
show in the next remark, the presence of isotropic elements in a normed algebra
B becomes a serious handicap for the automatic continuity of homomorphisms
from normed algebras into B.

REMARK 1.- Let A be a normed algebra over F such that A2 is con-
tained in some non-closed hyperplan, and B a normed algebra over F possessing
isotropic elements. Then there exist discontinuous homomorphisms from A into
B. Indeed, we have A2 ⊆ Ker(ψ) for a suitable discontinuous linear func-
tional ψ on A, so that, by choosing an isotropic element z in B, the mapping
ϕ : x→ ψ(x)z from A to B becomes a discontinuous homomorphism. We note
that the normed algebra A above can be chosen complete, associative, and com-
mutative. Indeed, starting from an arbitrary infinite-dimensional Banach space
X over F, and considering the normed algebra A over F whose vector space is
F × X and whose product and norm are given by (λ, ξ)(µ, η) := (λµ, 0) and
‖ (λ, ξ) ‖:=| λ | + ‖ ξ ‖, respectively, A becomes a complete normed, associa-
tive, and commutative algebra with A2 contained in some non-closed hyperplan.
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In the case that B has a unit, an alternative method, to construct discontinuous
homomorphisms from (better) complete normed associative and commutative
algebras into B, can be derived from [4; Proposition 6.6 and Example 6.5].

Following [12; pp. 49-50], we say that a non-zero algebra B over F is
quadratic if it has a unit 1, and for each y in B there exist elements τ(y)
and n(y) in F such that y2 − 2τ(y)y + n(y)1 = 0. Actually, in the definition
of [12] the fact that B 6= F1 is additionally required, but such a requirement is
unnecessary for our development. If B is a quadratic algebra over F, then, for y
in B\F1, the scalars τ(y) and n(y) are uniquely determined, so that, choosing
τ(α1) := α and n(α1) := α2 (α ∈ F), we obtain mappings τ and n (called
the trace form and the norm form, respectively) from B to F, which are linear
and quadratic, respectively (see again [12; pp. 49-50]). We note that quadratic
algebras are algebraic and power-associative.

LEMMA 3.- Let B be a quadratic algebra over F without isotropic elements,
and C a non-zero subalgebra of B. Then C is either simple with a unit or
isomorphic to F⊕ F.

Proof.- First assume that C does not contain the unit 1 of B. Then for every
y in C we have y2 = 2τ(y)y and hence, since B has no isotropic element, the
restriction of τ to C is an injective linear from. It follows C = Ff for some f in
C satisfying 2τ(f) = 1, so that the mapping λ→ λf is an isomorphism from F
onto C, and the proof is concluded in this case. Now assume that 1 ∈ C. Then
C is a quadratic algebra over F without isotropic elements, so that there is no
restriction in taking C = B. Assume additionally that B is not simple. Then
we can choose an ideal M of B with 0 6= M and 1 6∈ M . By the first part of
the proof, we have M = Ff for some idempotent f in B with 0 6= f 6= 1: Let
B = B1 ⊕ B1/2 ⊕ B0 be the Peirce decomposition of B relative to f [12; pp.
130-131]. The definition of B1 and B1/2, together with the fact that Ff is an
ideal of B, directly leads to B1 = Ff and B1/2 = 0, so that B = Ff⊕B0. By the
definition of B0, we have fB0 = 0, and hence 1 6∈ B0. But B0 is a subalgebra
of the algebra B+ obtained by symmetrization of the product of B (see again
[12; p. 131]). Since B+ has the same properties as B, it follows from the first
part of the proof that B0 = Fg for some non-zero idempotent g in B. Now we
have B = Ff ⊕ Fg with f and g non-zero idempotents satisfying fg = gf = 0,
and hence (λ, µ) → λf + µg is an isomorphism from F⊕ F onto B. �

REMARK 2.- It is worth mentioning that, if F = C, then in fact the algebra
B in the above lemma is isomorphic to either C or C ⊕ C. Indeed, if the
dimension of B is ≥ 3, then the restriction of the algebraic norm n of B to
Ker(τ) (where τ denotes the trace form on B) is a quadratic form on a complex
vector space of dimension ≥ 2, and hence there exists a non-zero y ∈ Ker(τ)
such that n(y) = 0, leading to the contradiction y 6= 0 = y2.
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Now we are ready to formulate and prove the main tool in our argument.

PROPOSITION 1.- Let A be a complete normed algebra over F, B a quadratic
algebra over F without isotropic elements, and ϕ : A → B a homomorphism.
Then, for every x in A, the inequality r(B,ϕ(x)) ≤‖ x ‖ holds.

Proof.- We can assume ϕ 6= 0, so that ϕ(A) is a non-zero subalgebra of B. By
Lemma 3, ϕ(A) is strongly semisimple. Therefore we can see ϕ as a homomor-
phism from A onto ϕ(A), and apply Lemma 2 to obtain r(ϕ(A), ϕ(x)) ≤‖ x ‖ for
every x in A. Finally note that, for y in ϕ(A), the equality r(ϕ(A), y) = r(B, y)
holds. �

We note that, if B is an algebraic power-associative algebra over F, and
if r(B, y) 6= 0 for every non-zero y ∈ B, then B has no isotropic element.
Keeping in mind this fact, the next result follows straightforwardly from the
above proposition.

COROLLARY 1.- Let B be a normed quadratic algebra over F. Assume
that there exists a positive constant M such that the inequality ‖ y ‖≤Mr(B, y)
holds for every y in B. Then all homomorphisms from complete normed algebras
over F into B are continuous.

To illustrate the field of applicability of Corollary 1, let us recall some facts
about smooth normed algebras. Smooth normed algebras over F are defined as
those normed algebras B over F having a norm-one unit which is a smooth point
of the closed unit ball of A. It is well-known that C is the unique smooth normed
complex algebra (see for example [10; Corollary 1.6]). In the real setting, things
are not so easy. For instance, every non-zero real pre-Hilbert space H can be
converted into a commutative smooth normed real algebra by fixing a norm-one
element 1 in H, and defining the product by means of the equality xy := (x |
1)y + (y | 1)x − (x | y)1 [10; Observation 1.3]. More generally, if H is any
(possibly equal to zero) real pre-Hilbert space, and if ∧ is an anticommutative
product on H satisfying ‖ ξ ∧ η ‖≤‖ ξ ‖‖ η ‖ and (ξ ∧ η | ϑ) = (ξ | η ∧ ϑ) for
all ξ, η, ϑ in H, then the pre-Hilbert space (R⊕H)`2 becomes a smooth normed
real algebra relative to the product

(λ, ξ)(µ, η) := (λµ− (ξ | η), λη + µξ + ξ ∧ η)

[7; Proposition 24]. Moreover, all smooth normed real algebras come from the
construction just described (see [2], [7; Theorem 27], and [8; Section 2]). It
follows that, if B is a smooth normed algebra over F, then B is quadratic, and
the equality ‖ y ‖= r(B, y) holds for every y in B. In this way the next result
is a particular case of Corollary 1.
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COROLLARY 2 [3].- Homomorphisms from complete normed algebras over
F into smooth normed algebras over F are continuous.

Another method to build normed quadratic real algebras from real pre-
Hilbert spaces is the following. If H is a real pre-Hilbert space, then the normed
space B := (R⊕H)`1 , endowed with the product

(λ, ξ)(µ, η) := (λµ+ (ξ | η), λη + µξ) ,

becomes a normed quadratic commutative real algebra whose elements y satisfy
the equality ‖ y ‖= r(B, y). We note that, when H is actually a Hilbert space
of dimension ≥ 2, the above procedure gives rise to the so-called spin JBW -
factors [5; Chapter 6], which are of capital relevance in the structure theory of
JB-algebras. Now Corollary 1 applies, leading the next result.

COROLLARY 3.- Homomorphisms from complete normed real algebras into
spin JBW -factors are continuous.

Spin JBW -factors, as well as smooth normed commutative algebras, are
particular relevant cases of the so-called Jordan algebras of a bilinear form,
whose construction is recalled in the sequel. Given a vector space X over F and
a symmetric bilinear form f : X ×X → F, we can consider the algebra over F

with vector space equal to F⊕X and product given by

(λ, ξ)(µ, η) := (λµ+ f(ξ, η), λη + µξ) .

Such an algebra is commutative and quadratic, is called the Jordan algebra of
the bilinear form f , and is denoted by J(X, f). Jordan algebras of bilinear
forms are more than examples of quadratic commutative algebra. Indeed, it
follows easily from the properties of the functions τ and n on quadratic algebras
that every quadratic commutative algebra over F is isomorphic to J(X, f) for a
suitable couple (X, f) as above.

Now we are ready to formulate and prove the main result of the paper.

THEOREM 1.- Let B be a complete normed quadratic algebra over F. Then
the following assertions are equivalent:

1. Homomorphisms from complete normed algebras over F into B are con-
tinuous.

2. Homomorphisms from complete normed, associative, and commutative al-
gebras over F into B are continuous.

3. B has no isotropic element.
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Proof.- The implication 1 ⇒ 2 is clear, whereas the one 2 ⇒ 3 follows from
Remark 1.

Assume that Assertion 3 holds. Then we claim that the mapping y → r(B, y)
is a vector space norm on B. If F = C, then the claim is easily verified by keeping
in mind Remark 2. If F = R, then, by passing to B+, we can assume that B is
commutative, and hence we have B = J(X, f) for some real vector space X and
some symmetric bilinear form f on X. Now, the absence of isotropic elements
in B implies f(ξ, ξ) 6= 0 for every non-zero element ξ in X, and therefore f is
of the form ε(. | .), where ε = ±1 and (. | .) is a suitable inner product on X.
Then a straightforward computation shows that, for y = (λ, ξ) in B = J(X, f),
we have

r(B, y) =| λ | +(ξ | ξ)1/2, if ε = 1,

and

r(B, y) = (| λ |2 +(ξ | ξ))1/2, if ε = −1.

Now that the claim is proved, we show that Assertion 1 holds by means of a
standard closed graph argument. Let A be a complete normed algebra over F,
and ϕ : A → B a homomorphisms. If xn → 0 in A with ϕ(xn) → y ∈ B, then,
by the claim and Proposition 1, we have

r(B, y) ≤ r(B, y − ϕ(xn)) + r(B,ϕ(xn)) ≤‖ y − ϕ(xn) ‖ + ‖ xn ‖→ 0 ,

and hence y = 0. �

REMARK 3.- i) We show, by means of an easy example, that the assumption
of completeness of B in Theorem 1 cannot be removed. Take A equal to an
arbitrary infinite-dimensional spin JBW -factor (i.e., A = J(X, f), where X is
an infinite-dimensional real Hilbert space and f is the inner product (. | .) of X,
with norm defined by ‖ (λ, ξ) ‖:=| λ | +(ξ | ξ)1/2). Now, choose a discontinuous
linear functional h on X, and consider B = J(X, f) with the norm |||.||| given by

|||(λ, ξ)||| := ‖ (λ, ξ) ‖ + | h(ξ) | .

Then A is a complete normed algebra, B is a normed quadratic algebra with-
out isotropic elements, and the identity mapping A → B is a discontinuous
homomorphism.

ii) Let B be a normed quadratic algebra. Consider the condition on B given
by:

(∗) There exists M > 0 satisfying ‖ y ‖≤Mr(B, y) for every y in B.

Corollary 1 shows that Condition (∗) is sufficient to ensure that B is an ACHR-
algebra. On the other hand, we have seen in the proof of Theorem 1 that,
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if B has no isotropic element, then the function r(B, .) is a norm on B. It
follows from Remark 1 that, if B is finite-dimensional, then Condition (∗) is
also necessary for B to enjoy Property ACHR. Now we can realize that, in
general, Condition (∗) need not be necessary for B to have Property ACHR.
Take B = J(X, f), where X is the Banach space of all real-valued continuous
functions on the closed real interval [0, 1], and f is the symmetric bilinear form
on X defined by

f(ξ, η) :=
∫ 1

0

ξ(t)η(t)dt ,

and endow B with the norm

‖ (λ, ξ) ‖:= | λ | + max{| ξ(t) | : t ∈ [0, 1]} .
Then B is a complete normed quadratic algebra without isotropic elements, and
hence, by Theorem 1, has Property ACHR. However, it is easily seen that, for
such a choice of B, there is no positive constant M satisfying ‖ y ‖≤Mr(B, y)
for every y in B.
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